Comparison With Other EDM Efforts

Current Bound	Future Goal	~dn Equivalent		
Neutron	dn < 3x/0 e-cm	~10^{-28}e-cm	10^{-28}e-cm	
199	Hg atom	dn < 2x/0 e-cm	~2x/0 e-cm	10^{-25} - 10^{-26}e-cm
129	Xe atom	dxe < 6x/0 e-cm	~10-10 e-cm	10^{-29}e-cm
Deuteron	—	10^{-29}e-cm	3x/0 e-cm	3x/0 e-cm

Deuteron Competitive - Better!

Marciano 9/2006

Electric Dipole Moment precesses in an Electric field

$$\frac{d\vec{s}}{dt} = \vec{d} \times \vec{E}$$

Electric Dipole Moments in Storage Rings

$$\frac{d\vec{S}}{dt} = \vec{d} \times (\vec{v} \times \vec{B})$$

e.g. 1T corresponds to 300 MV/m for relativistic particles

Deuteron EDM

- High sensitivity to CP-violation
- Negligible SM background
- Physics beyond the SM (esp. SUSY) expect
 CP-violation within reach
- Great sensitivity to T-odd Nuclear Forces
- Complementary and better than nEDM
- If observed it will provide a new, large source of CP-violation that could explain the Baryon Asymmetry of our Universe (BAU)

Physics Motivation

$$dEDM \approx 10^{-24} \,\mathrm{e} \cdot \mathrm{cm} \times \sin \delta \times \left(\frac{1 \,\mathrm{TeV}}{M_{SUSY}}\right)^2$$

- Deuteron EDM at 10⁻²⁹e⋅cm has a reach of >10² TeV or, if new physics exist at the LHC scale, 10⁻⁵ rad CP-violating phase. Both are much beyond the design sensitivity of LHC.
- NP Long Range Plan includes strong support of dEDM development recognizing its physics potential.

Experimental Principle of dEDM

Polarize

Interact with an E-field

Analyze as a function of time

Storage ring EDM: The deuteron case

- High intensity sources (~10¹¹/cycle)
- High vector polarization (>80%)
- High analyzing power (30-50% for P=0.8-1.5 GeV/c)
- Long spin coherence time possible (>100s)
- Large effective E*-field=γV×B,
 1T→300MV/m